skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fan, Jintu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Due to fiber swelling, textile fabrics containing hygroscopic fibers tend to decrease pore size under wet or increasing humidity and moisture conditions, the reverse being true. Nevertheless, for personal thermal regulation and comfort, the opposite is desirable, namely, increasing the fabric pore size under increasing humid and sweating conditions for enhanced ventilation and cooling, and a decreased pore size under cold and dry conditions for heat retention. This paper describes a novel approach to create such an unconventional fabric by emulating the structure of the plant leaf stomata by designing a water responsive polymer system in which the fabric pores increase in size when wet and decrease in size when dry. The new fabric increases its moisture permeability over 50% under wet conditions. Such a water responsive fabric can find various applications including smart functional clothing and sportswear. Graphical Abstract 
    more » « less